8. Меры безопасности

Монтаж и техническое обслуживание прибора должны производиться квалифицированными специалистами, изучившими настоящее руководство по эксплуатации. При эксплуатации и техобслуживании необходимо придерживаться требований нормативных документов:

- Правил технической эксплуатации электроустановок пользователей.
- Правил техники безопасности при эксплуатации электроустановок пользователей

НЕ ПОДКЛЮЧАТЬ ПРИБОР В РАЗОБРАННОМ ВИДЕ!!!

9. Условия хранения, транспортирования и эксплуатации

Приборы, в упаковке предприятия -изготовителя должны храниться в закрытых помещениях с естественной вентиляцией.

Климатические факторы условий хранения: - температура воздуха: -50°С... +50°С;

- относительная среднегодовая влажность: 75% при +15°C

Прибор работоспособен при любом расположении в пространстве.

Прибор не предназначен для эксплуатации в условиях тряски и ударов, а также во взрывоопасных помещениях

Не допускается попадание влаги на входные контакты клеммных зажимов и внутренние элементы прибора. Запрещается использование его в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т.п.

Внимание! Не допускается погружение датчика в жидкость.

При необходимости погружения датчика в жидкость следует обеспечить его надежную гидроизоляцию.

Корректная работа прибора гарантируется при температуре окружающей среды от -25°C до +50°C и относительной влажности от 30 до 80%.

Для эксплуатации прибора при отрицательных температурах необходимо установить его во влагозащищенный корпус, чтобы избежать образования конденсата при перепаде температур.

Срок эксплуатации 10 лет. Прибор утилизации не подлежит.

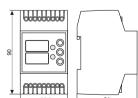
10. Гарантийные обязательства

Гарантийный срок эксплуатации прибора - 5 лет со дня продажи.

В течение гарантийного срока эксплуатации изготовитель производит ремонт прибора в случае выхода его из строя при условии соблюдения потребителем правил хранения, подключения, и эксплуатации. Гарантийное обслуживание прибора осуществляется при наличии отметки торгующей организации. Прибор не подлежит гарантийному обслуживанию в следующих случаях: 1. Истечение гарантийного срока эксплуатации.

- Условия эксплуатации и электрическая схема подключения не соответствуют "Инструкции по эксплуатации", прилагаемой к прибору.
 - 3. Осуществление самостоятельного ремонта пользователем
- 4. Наличие следов механических повреждений (нарушение пломбирования, нетоварный вид, подгорание силовых клемм с внешней стороны).
- Б.Наличие следов воздействия влаги, попадания посторонних предметов, пыли, грязи внутрь прибора (в т.ч. насекомых).
- 6.Удара молнии, пожара, затопления, отсутствие вентиляции и других причин, находящихся вне контроля производителя.

Гарантийное и послегарантийное обслуживание производит ООО "ЭНЕРГОХИТ", 04655, Украина, г. Киев, ул. В. Хвойки, 21 Тел/Факс +38 (044) 586-53-27


11. Свидетельство о приемке

Прибор прошел приемо-сдаточные испытания.

Номер партии	Дата выпуска

TK-6

ТЕРМОРЕГУЛЯТОР

(двухканальный)

-55°C...+125°C

ТУ У 29.1-3496336-002:2011

Инструкция по эксплуатации

1. Назначение

Двухканальный электронный регулятор температуры (далее заданной терморегулятор) ТК-6 предназначен для поддержания пользователем температуры по двум независимым каналам измерения управления с отображением значений на встроенном цифровом светодиодном индикаторе. Терморегулятор можно использовать как для контроля температуры в двух различных зонах так и для управления двухступенчатой системой поддержания температуры.

2. Технические характеристики

Диапазон измеряемых температур, °С		-55+125
Диапазон регулируемых температур, °С		-55+125
Дискретность индикации, °С	от -9,9 до +99	0,1
	в остальном диапазоне	1
Погрешность измерения, °С, не более		0,5
Температурный гистерезис (∆t), °С		0,139,9
Номинальный ток активной нагрузки, А		4,5
Напряжение питания, В		~220 ± 10%
Потребляемая мощность, Вт, не более		5
Рабочая частота, Гц		50
Степень защиты терморегулятора		lp20
Рабочая температура, °C		-25 +50
Габаритные размеры, мм		90x52.5x64

Устанавливаемые пользователем параметры:

- Поддерживаемая температура,°С -55...+125 (33*) 0,1...39,9 (2* Гистерезис, °С НАГРЕВ или ОХЛАЖДЕНИЕ (HÒt*)
- Режим работы * заводские установки

3. Комплект поставки

- цифровой терморегулятор ТК-6
- датчик температуры 2шт
- инструкция по эксплуатации
- упаковка
- отвертка

4. Устройство прибора

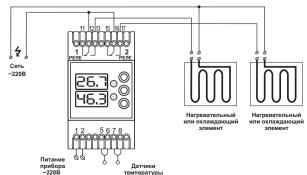
Терморегулятор управляется микроконтроллером, элементом служит цифровой датчик температуры DS18B20. Для управления нагрузкой используется электромагнитное реле. Установки пользователя вводятся в прибор с помощью кнопок, расположенных на передней панели прибора. Все устанавливаемые значения сохраняют-ся в энергонезависимой памяти контроллера. Прибор не нуждается в калибровке при замене датчика.

Производитель имеет право вносить изменения в конструкцию и электрические схемы терморегулятора не ухудшающие его метрологические и технические характеристики.

5. Монтаж, подготовка к работе

Крепление прибора осуществляется на монтажный профиль TS-35 (DIN-рейка). Корпус прибора занимает три модуля по 17,5 мм. Подключите провода в соответствии со схемой (см ниже). Сечение проводника - не более 1,5 мм². При использовании многожильного провода необходимо использовать кабельные наконечники.

При установке терморегулятора во влажных помещениях (ванная, сауна, бассейн и др.) необходимо поместить его в монтажный бокс со степенью защиты не ниже IP55 (частичная защита от пыли и защита от брызг в любом направлении).


Прокладка проводов датчиков рядом с силовыми цепями может привести к возникновению электромагнитных помех и их влиянию на измерительную часть прибора, что может вызвать сбои в его работе.

Подключение

Датчики температуры (поставляются с прибором) подключаются к контактам 5-6 и 7-8 (см. рис.).

Управляющие контакты РЕЛЕ1 (12 и 13) и РЕЛЕ2 (16 и 17) подключаются в разрыв цепей питания нагревательных (охлаждающих) элементов.

Питание прибора подается на контакты 1 и 2.

Назначение выводов

пазначение выводов			
1	Питание	Клеммы питания	
2	~220B (±10%), 50 Гц	прибора	
3	-	Не используется	
4	-	Не используется	
5	Датчик	Клеммы подключения	
6	DS18B20	выносного датчика	
7	Датчик	Клеммы подключения	
8	DS18B20	выносного датчика	
9	-	Не используется	
10	-	Не используется	
11	Выход реле NC (нормально-закрытый контакт)	Клеммы управляющего	
12	Выход реле СОМ (перекидной контакт)	реле с перекидным	
13	Выход реле NO (нормально-открытый контакт)	контактом	
14	-	Не используется	
15	Выход реле NC (нормально-закрытый контакт)	Клеммы управляющего	
16	Выход реле СОМ (перекидной контакт)	реле с перекидным	
17	Выход реле NO (нормально-открытый контакт)	контактом	
18	-	Не используется	

ВНИМАНИЕ! Прибор контролирует подключение датчика и при наличии неполадок высвечивает:

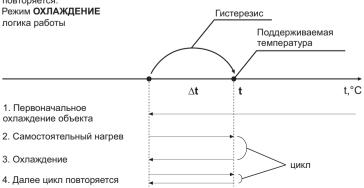
- "ОБР" - обрыв или отсутствие датчика температуры;

- "3.С." - неправильная полярность подключения или короткое замыкание в цепи датчика;

- «сгс» - неправильное чтение данных от датчика (может происходить из-за помех от силовых кабелей на провод датчика). Не рекомендуется прокладывать провод от датчика вместе с силовыми проводами. Длина провода датчика может быть увеличина до 200 м (при условии использования провода типа «витая

Светодиод на передней панели прибора сигнализирует о срабатывании

исполнительного реле соответствующего датчика. Реле на выходе рассчитано на коммутируемый ток 4,5A (1 кВт) активной нагрузки. При необходимости коммутации большей мощности или при коммутации реактивной нагрузки (например - насос) необходимо использовать промежуточное реле (контактор).


6. Принцип работы

Работа терморегулятора происходит в режиме НАГРЕВ или в режиме ОХЛАЖДЕНИЕ.

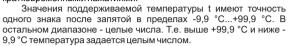
При работе в режиме НАГРЕВ осуществляется поддержание заданной температуры t объекта путем его нагрева. По достижении температуры t, терморегулятор отключает нагревательный элемент и объект остывает на установленное значение гистерезиса ∆t, после чего опять включается нагрев и т. д.

При работе в режиме ОХЛАЖДЕНИЕ осуществляется поддержание заданной температуры t объекта путем его охлаждения. Терморегулятор поддерживает температуру объекта не выше заданной температуры t. При первоначальном включении охлаждение происходит до значения t- Δt , τ . e. ниже заданной температуры t на значение гистерезиса Δt , после чего реле отключается. При нагреве объекта до температуры t, терморегулятор включает охлаждающий элемент и объект снова охлаждается на установленное значение гистерезиса Δt после чего охлаждение объекта снова отключается. Далее цикл повторяется.

Гистерезис - это разница между температурой включения и отключения контактов реле терморегулятора (падение температуры).

7. Настройка прибора

Для настройки терморегулятора необходимо ввести три параметра для каждого канала измерения:


- поддерживаемую температуру t;
- режим работы (НАГРЕВ или ОХЛАЖДЕНИЕ).
- гистерезис ∆t;

В режиме настройки устанавливаемое значение мигает.

Переход в режим установки параметров и переключение между устанавливаемыми параметрами осуществляется кнопкой 🔘 .

Последовательность установки параметров для первого (верхний индикатор):

ШАГ 1. <u>Установка поддерживаемой температуры t.</u>

ШАГ 2. Установка режима работы.

При кратковременном нажатии на кнопку

при кратковременном нажатии на кнопку

переходим к установке режима работы. При этом отображается текущий

режим работы терморегулятора (показания

мигают). Кратковременным нажатием на кнопку

устанавливается режим "HOt" - НАГРЕВ, нажатием на кнопку

устанавливается режим "COLd" - ОХЛАЖДЕНИЕ.

ШАГ 3. Установка гистерезиса ∆t.

ШАІ 3. УСТАНОВКА ГИСТЕРЕЗИСА ДІ.
При кратковременном нажатии на кнопку

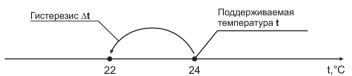
переходим к установке гистерезиса ді. При этом показания на индикаторе мигают. Кнопками

и

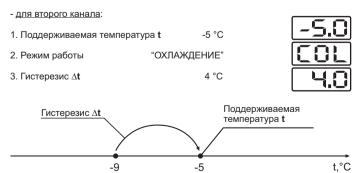
установите необходимое значение. Кратковременным нажатием на любую из кнопок производится изменение температуры на 0,1 °С. При удержании любой из кнопок более 5 секунд, происходит изменение значения с шагом 1 °С. Рекомендуется длительным нажатием установить целую часть числа, после чего откорректировать значение кратковременными нажатиями.

канала

Затем те же значения и в той же последовательности необходимо установить для второго канала измерения (нижний индикатор). Переход в режим установки параметров для второго канала измерения осуществляется кратковременным нажатием кнопки ②


Выход из режима установки произойдет автоматически через 10 секунд после последнего нажатия на кнопку.

Все установленные значения сохраняются в энергонезависимой памяти терморегулятора.


Пример программирования

Необходимо обогреть помещение и поддерживать температуру в пределах от 22 до 24 °C. Одновременно с этим нужно поддерживать температуру в морозильной камере от -9 до -5 °C. Для этого будем использовать первый канал терморегулятора для контроля температуры в помещении, а второй для контроля температуры в морозильной камере. Необходимо установить в терморегуляторе следующие значения:

При этом нагреватель, управляемый терморегулятором, будет нагревать помещение до 24 °C и отключаться. После остывания помещения на 2°C (до 22 °C), терморегулятор снова включит нагреватель и цикл повторится.

При этом охлаждающий элемент, управляемый терморегулятором, будет охлаждать морозильную камеру до -9 °C и отключаться. После повышения в ней температуры на 4°C, т.е. до -5 °C, терморегулятор снова включит охладительный элемент, начнется охлаждение и цикл повтолится